95 research outputs found

    A gait phase prediction model trained on benchmark datasets for evaluating a controller for prosthetic legs

    Get PDF
    Powered lower-limb assistive devices, such as prostheses and exoskeletons, are a promising option for helping mobility-impaired individuals regain functional gait. Gait phase prediction plays an important role in controlling these devices and evaluating whether the device generates a gait similar to that of individuals with intact limbs. This study proposes a gait phase prediction method based on a deep neural network (DNN). The long short-term memory (LSTM)-based model predicts a continuous gait phase from the 250 ms history of the vertical load, thigh angle, knee angle, and ankle angle, commonly available on powered lower-limb assistive devices. One unified model was trained using publicly available benchmark datasets containing intact limb gaits for level-ground walking (LGW) and ascending stairs (SA). A phase prediction error of 1.28% for all benchmark datasets was obtained. The model was subsequently applied to a state machine-controlled powered prosthetic leg dataset collected from four individuals with unilateral transfemoral amputation. The gait phase prediction results (a phase prediction error of 5.70%) indicate that the model trained on benchmark data can be used for a system not included in the training dataset with no post-processing, such as model adaptation. Furthermore, it provided information regarding evaluation of the controller: whether the prosthetic leg generated normal gait. In conclusion, the proposed gait phase prediction model will facilitate efficient gait prediction and evaluation of controllers for powered lower-limb assistive devices

    Functional Mobility Training With a Powered Knee and Ankle Prosthesis

    Get PDF
    Limb loss at the transfemoral or knee disarticulation level results in a significant decrease in mobility. Powered lower limb prostheses have the potential to provide increased functional mobility and return individuals to activities of daily living that are limited due to their amputation. Providing power at the knee and/or ankle, new and innovative training is required for the amputee and the clinician to understand the capabilities of these advanced devices. This protocol for functional mobility training with a powered knee and ankle prosthesis was developed while training 30 participants with a unilateral transfemoral or knee disarticulation amputation at a nationally ranked physical medicine and rehabilitation research hospital. Participants received instruction for level-ground walking, stair climbing, incline walking, and sit-to-stand transitions. A therapist provided specific training for each mode including verbal, visual, and tactile cueing along with patient education on the functionality of the device. The primary outcome measure was the ability of each participant to demonstrate independence with walking and sit-to-stand transitions along with modified independence for stair climbing and incline walking due to the use of a handrail. Every individual was successful in comfortable ambulation of level-ground walking and 27 out of 30 were successful in all other functional modes after participating in 1–3 sessions of 1–2 h in length (3 terminated their participation before attempting all activities). As these prosthetic devices continue to advance, therapy techniques must advance as well, and this paper serves as education on new training techniques that can provide amputees with the best possible tools to take advantage of these powered devices to achieve their desired clinical outcomes

    A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts’ law style assessment procedure

    Get PDF
    Background: Pattern recognition (PR) based strategies for the control of myoelectric upper limb prostheses are generally evaluated through offline classification accuracy, which is an admittedly useful metric, but insufficient to discuss functional performance in real time. Existing functional tests are extensive to set up and most fail to provide a challenging, objective framework to assess the strategy performance in real time. Methods: Nine able-bodied and two amputee subjects gave informed consent and participated in the local Institutional Review Board approved study. We designed a two-dimensional target acquisition task, based on the principles of Fitts' law for human motor control. Subjects were prompted to steer a cursor from the screen center of into a series of subsequently appearing targets of different difficulties. Three cursor control systems were tested, corresponding to three electromyography-based prosthetic control strategies: 1) amplitude-based direct control (the clinical standard of care), 2) sequential PR control, and 3) simultaneous PR control, allowing for a concurrent activation of two degrees of freedom (DOF). We computed throughput (bits/second), path efficiency (%), reaction time (second), and overshoot (%)) and used general linear models to assess significant differences between the strategies for each metric. Results: We validated the proposed methodology by achieving very high coefficients of determination for Fitts' law. Both PR strategies significantly outperformed direct control in two-DOF targets and were more intuitive to operate. In one-DOF targets, the simultaneous approach was the least precise. The direct control was efficient in one-DOF targets but cumbersome to operate in two-DOF targets through a switch-depended sequential cursor control. Conclusions: We designed a test, capable of comprehensively describing prosthetic control strategies in real time. When implemented on control subjects, the test was able to capture statistically significant differences (p < 0.05) in control strategies when considering throughputs, path efficiencies and reaction times. Of particular note, we found statistically significant (p < 0.01) improvements in throughputs and path efficiencies with simultaneous PR when compared to direct control or sequential PR. Amputees could readily achieve the task; however a limited number of subjects was tested and a statistical analysis was not performed with that population

    Pengaruh Interaksi Sosial dan Efikasi Diri terhadap Kecerdasan Emosi (Survey pada Mahasiswa Pendidikan Akuntansi Upi)

    Full text link
    Penelitian ini dilatarbelakangi oleh rendahnya sebagian mahasiswa Pendidikan Akuntansi berkaitan dengan kecerdasan emosi mahasiswa Pendidikan Akuntansi. Pentingnya mengkaji kecerdasan emosi mahasiswa, berkaitan dengan tujuan program studi Pendidikan Akuntansi yaitu mempersiapkan calon guru akuntansi menjelang PPL, dimana bukan hanya aspek kecerdasan intelgensi, namun kecerdasan emosi juga sangat penting dalam mempersiapkan mahasiswa terutama. Teori untuk membahas penelitian ini adalah kecerdasan Emosi dari Goleman, efikasi diri dari Bandura dan Interaksi sosial Tujuan penelitian ini adalah untuk mengkaji pengaruh interaksi sosial dan efikasi diri terhadap kecerdasan emosi. Metode penelitian menggunakan verifikatif dengan desain survey ekspalanatory. Populasi seluruh mahasiswa Pendidikan Akuntansi sebanyak dengan sampel 120 responden. Pengumpulan data dengan angket dan analisis data menggunakan analisis jalur (path analysis). Hasil penelitian menunjukkan bahwa interaksi sosial dan efikasi diri baik secara parsial maupun secara simultan berpengaruh positif terhadap kecerdasan emosi. Dengan Interaksi sosial sebagai faktor yang paling berpengaruh terhadap kecerdasan emosi. Berdasarkan analisis data, maka diperlukan peningkatan indikator yang masih rendah yaitu indikator kerjasama dalam variabel interaksi sosial dan perencanaan pengaturan diri dalam variabel efikasi diri

    Evidence for a Time-Invariant Phase Variable in Human Ankle Control

    Get PDF
    Human locomotion is a rhythmic task in which patterns of muscle activity are modulated by state-dependent feedback to accommodate perturbations. Two popular theories have been proposed for the underlying embodiment of phase in the human pattern generator: a time-dependent internal representation or a time-invariant feedback representation (i.e., reflex mechanisms). In either case the neuromuscular system must update or represent the phase of locomotor patterns based on the system state, which can include measurements of hundreds of variables. However, a much simpler representation of phase has emerged in recent designs for legged robots, which control joint patterns as functions of a single monotonic mechanical variable, termed a phase variable. We propose that human joint patterns may similarly depend on a physical phase variable, specifically the heel-to-toe movement of the Center of Pressure under the foot. We found that when the ankle is unexpectedly rotated to a position it would have encountered later in the step, the Center of Pressure also shifts forward to the corresponding later position, and the remaining portion of the gait pattern ensues. This phase shift suggests that the progression of the stance ankle is controlled by a biomechanical phase variable, motivating future investigations of phase variables in human locomotor control.United States Army Medical Research Acquisition Activity (USAMRAA grant W81XWH-09-2-0020)National Institute of Neurological Disorders and Stroke (U.S.) (NIH award number F31NS074687)Burroughs Wellcome Fund (Career Award at the Scientific Interface

    Haptic Transparency and Interaction Force Control for a Lower-Limb Exoskeleton

    Full text link
    Controlling the interaction forces between a human and an exoskeleton is crucial for providing transparency or adjusting assistance or resistance levels. However, it is an open problem to control the interaction forces of lower-limb exoskeletons designed for unrestricted overground walking. For these types of exoskeletons, it is challenging to implement force/torque sensors at every contact between the user and the exoskeleton for direct force measurement. Moreover, it is important to compensate for the exoskeleton's whole-body gravitational and dynamical forces, especially for heavy lower-limb exoskeletons. Previous works either simplified the dynamic model by treating the legs as independent double pendulums, or they did not close the loop with interaction force feedback. The proposed whole-exoskeleton closed-loop compensation (WECC) method calculates the interaction torques during the complete gait cycle by using whole-body dynamics and joint torque measurements on a hip-knee exoskeleton. Furthermore, it uses a constrained optimization scheme to track desired interaction torques in a closed loop while considering physical and safety constraints. We evaluated the haptic transparency and dynamic interaction torque tracking of WECC control on three subjects. We also compared the performance of WECC with a controller based on a simplified dynamic model and a passive version of the exoskeleton. The WECC controller results in a consistently low absolute interaction torque error during the whole gait cycle for both zero and nonzero desired interaction torques. In contrast, the simplified controller yields poor performance in tracking desired interaction torques during the stance phase.Comment: 17 pages, 12 figure

    Dual window pattern recognition classifier for improved partial-hand prosthesis control

    No full text
    Although partial-hand amputees largely retain the ability to use their wrist, it is difficult to preserve wrist motion while using a myoelectric partial-hand prosthesis without severely impacting control performance. Electromyogram (EMG) pattern recognition is a well-studied control method; however, EMG from wrist motion can obscure myoelectric finger control signals. Thus, to accommodate wrist motion and to provide high classification accuracy and minimize system latency, we developed a training protocol and a classifier that switches between long and short EMG analysis window lengths.Seventeen non-amputee and two partial-hand amputee subjects participated in a study to determine the effects of including EMG from different arm and hand locations during static and/or dynamic wrist motion in the classifier training data. We evaluated several real-time classification techniques to determine which control scheme yielded the highest performance in virtual real-time tasks using a 3-way ANOVA. We found significant interaction between analysis window length and the number of grasps available. Including static and dynamic wrist motion and intrinsic hand muscle EMG with extrinsic muscle EMG significantly reduced pattern recognition classification error by 35%. Classification delay or majority voting techniques significantly improved real-time task completion rates (17%), selection (23%) and completion (11%) times, and selection attempts (15%) for non-amputee subjects, and the dual window classifier significantly reduced the time (8%) and average number of attempts required to complete grasp selections (14%) made in various wrist positions. Amputee subjects demonstrated improved task timeout rates, and made fewer grasp selection attempts, with classification delay or majority voting techniques.Thus, the proposed techniques show promise for improving control of partial-hand prostheses and more effectively restoring function to individuals using these devices

    Generating synthetic gait patterns based on benchmark datasets for controlling prosthetic legs

    No full text
    Abstract Background Prosthetic legs help individuals with an amputation regain locomotion. Recently, deep neural network (DNN)-based control methods, which take advantage of the end-to-end learning capability of the network, have been proposed. One prominent challenge for these learning-based approaches is obtaining data for the training, particularly for the training of a mid-level controller. In this study, we propose a method for generating synthetic gait patterns (vertical load and lower limb joint angles) using a generative adversarial network (GAN). This approach enables a mid-level controller to execute ambulation modes that are not included in the training datasets. Methods The conditional GAN is trained on benchmark datasets that contain the gait data of individuals without amputation; synthetic gait patterns are generated from the user input. Further, a DNN-based controller for the generation of impedance parameters is trained using the synthetic gait pattern and the corresponding synthetic stiffness and damping coefficients. Results The trained GAN generated synthetic gait patterns with a coefficient of determination of 0.97 and a structural similarity index of 0.94 relative to benchmark data that were not included in the training datasets. We trained a DNN-based controller using the GAN-generated synthetic gait patterns for level-ground walking, standing-to-sitting motion, and sitting-to-standing motion. Four individuals without amputation participated in bypass testing and demonstrated the ambulation modes. The model successfully generated control parameters for the knee and ankle based on thigh angle and vertical load. Conclusions This study demonstrates that synthetic gait patterns can be used to train DNN models for impedance control. We believe a conditional GAN trained on benchmark datasets can provide reliable gait data for ambulation modes that are not included in its training datasets. Thus, designing gait data using a conditional GAN could facilitate the efficient and effective training of controllers for prosthetic legs

    A Real Time Performance Assessment of Simultaneous Pattern Recognition Control for Multi-functional Upper Limb Prostheses

    No full text
    A natural and intuitive operation of multifunctional upper limb prostheses involves the concurrent activation of multiple degrees of freedom in a proportional way. Several approaches to simultaneous and proportional control strategies have been investigated; provided outcome measures however were offline accuracy or error rates and lacked the functional component of a preclinical assessment. This study evaluated a simultaneous proportional pattern recognition control strategy with two parallel classifiers in a two-dimensional Fitts' law style test and compared it to a sequential pattern recognition approach. The proposed test allowed for a complete evaluation through different performance metrics such as throughput (TP, bits/sec), path efficiency (PE, %), completion rate (%), overshoot (%) and reaction time (sec). We found that the simultaneous approach presented with numerous advantages with respect to the sequential alternative through significantly higher TP and PE for combined-motion targets (p<0.001) and significantly less overshooting in both combined and discrete targets (p<0.01). For discrete motions, the TP was significantly lower for the simultaneous approach (p<0.001) but PE was similar. There was no difference in either completion rate or reaction time. These results support the potential of simultaneous pattern recognition for the control of multifunctional prostheses and underline the usefulness of a simple functional test in a preclinical framework

    Adapting myoelectric control in real-time using a virtual environment

    No full text
    Abstract Background Pattern recognition technology allows for more intuitive control of myoelectric prostheses. However, the need to collect electromyographic data to initially train the pattern recognition system, and to re-train it during prosthesis use, adds complexity that can make using such a system difficult. Although experienced clinicians may be able to guide users to ensure successful data collection methods, they may not always be available when a user needs to (re)train their device. Methods Here we present an engaging and interactive virtual reality environment for optimal training of a myoelectric controller. Using this tool, we evaluated the importance of training a classifier actively (i.e., moving the residual limb during data collection) compared to passively (i.e., maintaining the limb in a single, neutral orientation), and whether computational adaptation through serious gaming can improve performance. Results We found that actively trained classifiers performed significantly better than passively trained classifiers for non-amputees (P < 0.05). Furthermore, collecting data passively with minimal instruction, paired with computational adaptation in a virtual environment, significantly improved real-time performance of myoelectric controllers. Conclusion These results further support previous work which suggested active movements during data collection can improve pattern recognition systems. Furthermore, adaptation within a virtual guided serious game environment can improve real-time performance of myoelectric controllers
    • …
    corecore